Influence of augmented humans in online interactions during voting events

Influence of augmented humans in online interactions during voting events

  • Massimo Stella (Scholar)
  • Marco Cristoforetti (Scholar)
  • Marco Cristoforetti (Scholar)
  • Abstract: Overwhelming empirical evidence has shown that online social dynamics mirrors real-world events. Hence, understanding the mechanisms leading to social contagion in online ecosystems is fundamental for predicting, and even manouvering, human behavior. It has been shown that one of such mechanisms is based on fabricating armies of automated agents that are known as social bots. Using the recent Italian elections as an emblematic case study, here we provide evidence for the existence of a special class of highly influential users, that we name “augmented humans”. They exploit bots for enhancing both their visibility and influence, generating deep information cascades to the same extent of news media and other broadcasters. Augmented humans uniformly infiltrate across the full range of identified clusters of accounts, the latter reflecting political parties and their electoral ranks.
  • Bruter and Harrison [19] shift the focus on the psychological in uence that electoral arrangements exert on voters by altering their emotions and behavior. The investigation of voting from a cognitive perspective leads to the concept of electoral ergonomics: Understanding optimal ways in which voters emotionally cope with voting decisions and outcomes leads to a better prediction of the elections. (pg 1)
  • Most of the Twitter interactions are from humans to bots (46%); Humans tend to interact with bots in 56% of mentions, 41% of replies and 43% of retweets. Bots interact with humans roughly in 4% of the interactions, independently on interaction type. This indicates that bots play a passive role in the network but are rather highly mentioned/replied/retweeted by humans. (pg 2)
  • bots’ locations are distributed worldwide and they are present in areas where no human users are geo-localized such as Morocco.  (pg 2)
  • Since the number of social interactions (i.e., the degree) of a given user is an important estimator of the in uence of user itself in online social networks [1722], we consider a null model fixing users’ degree while randomizing their connections, also known as configuration model [2324].  (pg 2)
  • During the whole period, bot bot interactions are more likely than random (Δ > 0), indicating that bots tend to interact more with other bots rather than with humans (Δ < 0) during Italian elections. Since interactions often encode the spread of a given content online [16], the positive assortativity highlights that bots share contents mainly with each other and hence can resonate with the same content, be it news or spam.  (pg 2)
  • Differently from previous works, where the semantic content of bots and humans differs in its emotional polarity [12], in here we nd that bots mainly repeat the same political content of human users, thus boosting the spreading of hashtags strongly related to the electoral process, such as hashtags referring to the government or to political victory, names of political parties or names of influential politicians (see also 3). (pg 4)
  • Frequencies of individual hashtags during the whole electoral process display some interesting shifts, reported in Table III (Top). For instance, the hashtag #exitpoll, indicating the electoral outcome, becomes 10000 times more frequent on the voting day than before March 4. These shifts indicate that the frequency of hashtags reflects real-world events, thus underlining the strong link between online social dynamics and the real-world electoral process. (pg 4)
  • TABLE II. Top influencers are mostly bots. Hubs characterize influential users and broadcasters in online social systems [17], hence we use degree rankings for identifying the most in uential users in the network. (pg 5)
  • bots are mostly influential nodes which tend to interact mostly with other bots rather than humans and, when they interact with human users, they preferentially target the most influential ones. (pg 5)
  • we first filter the network by considering only pair of users with at least one retweet, with either direction, because re-sharing content it is often a good proxy of social endorsement [21]. However, Retweets alone are not sufficient to wash out the noise intrinsic to systems like Twitter, therefore we apply a more selective restriction, by requiring that at least another social action – i.e., either mention or reply – must be present in addition to a retweet [12]. This restrictive selection allows one to filter out all spurious interactions among users with the advantage of not requiring any thresholding approach with respect to the frequency of interactions themselves. (pg 5)
  • The resulting network is what we call the social bulk, i.e. a network core of endorsement and exchange among users. By construction, information ows among users who share strong social relationships and are characterized by similar ideologies: in fact, when a retweet goes from one user to another one, both of them are endorsing the same content, thus making non-directionality a viable approach for representing the endorsement related to content sharing. (pg 5)
  • Fiedler partitioning
  • The relevant literature has used the term “cyborg” for identifying indistinctly bot-assisted human or human-assisted bot accounts generating spam content over social platforms such as Twitter [5, 35]. Here, we prefer to use the term \augmented human” for indicating specifically those human accounts exploiting bots for artificially increasing, i.e. augmenting, their in uence in online social platforms, analogously to physical augmentation improving human performances in the real world [36]. (pg 8)
  • Baseline social behavior is defined by the medians of the two observables, like shown in Fig. 6c. This map allows to easily identify four categories of individuals in the social dynamics: i) hidden in uentials, generating information cascades rapidly spreading from a large small number of followers; ii) in uentials, generating information cascades rapidly spreading from a large number of followers; iii) broadcasters, generating information cascades slowly spreading from a large number of followers; iv) common users, generating information cascades slowly spreading from a small number of followers. (pg 9)
  • Hidden influentials, known to be efficient spreaders in viral phenomena [45], are mostly humans: in this category falls the augmented humans, assisted by social bots to increase their online visibility. (pg 10)
  • We define augmented humans as human users having at least 50% + 1 of bot neighbours in the social bulk. We discard users having less than 3 interactions in the social bulk. (pg 10)
  • The most central augmented human in terms of number of social interactions is Utente01, which interacts with 2700 bots and 55 humans in the social bulk. (pg 10)
  • The above cascade analysis reveals that almost 2 out 3 augmented humans resulted playing an important role in the flow of online content: 67% of augmented humans were either influentials or hidden influentials or broadcasters. These results strongly support the idea that via augmentation even common users can become social influencers without having a large number of followers/friends but rather by recurring to the aid of either armies of bots (e.g., Utente01, an hidden in uential) or the selection of a few key helping bots. (pg 11)
Advertisements

One thought on “Influence of augmented humans in online interactions during voting events

  1. Pingback: Phil 4.9.18 – viztales

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s