Life can be a drag sometimes

  • Cleaning up commands. Mostly done
  • While testing the “test” part of the app, I’m realizing that my “ratio” calculations have some issues. Before tying to fix them directly, I’m going to try just making a different gripper that has three “sensor spheres” on each finger. Then I can just let my “drag-based” physics to the whole job. Finished. That’s much better
  • Quick! What’s wrong with the following code?
	for(int i = 0; i < 3; ++i){
		position[i] += velocityVec[i];
		if(velocityVec[i] > drag*ratio){
			velocityVec[i] -= drag*ratio;
			velocityVec[i] = 0;
  • Yep, the drag is only being applied for objects moving in a positive direction. This is a problem that has been driving me crazy for days. I thought is was some artifact of the communication between the Phantom control loop (1k hz) and the simulation loop (100 hz). Nope. Simple math mistake. Facepalm.
  • Pretty picture for the day. Notice that the grippers now have multiple points of contact:


  • I’ve also started to notice how feedback changes the speed that you can perform the task. Haptic and tactor seem pretty close. Open loop is much worse, at least subjectively. Let’s see what the data says.

Zeno’s development schedule

Ok, it’s not as bad as that paradox, but the amount of work remaining always grows when you get closer to the end. Still, I think I’ll be ready by the end of the week.

  • Goal Box – done. I had to add collision detection for determining if a TargetSphere was touching (for setup) or inside (achieving the goal). I basically wrote an axis-aligned bounding box where the radius of the TargetSphere was either added (inside) to or subtracted from (touching) the size of the GoalBox. I’m not calculating penetration, just looking for sign change on the line segment.
  • Added <map> of UI_cmd to handle commands coming from the control system and results coming from the sim. Worked right the first time. Yay, C++ templates!
  • Enable/disable haptics/tactors – done. It’s interesting to see how the behavior and feel of the system changes with the different capabilities enabled/disabled.
  • Started working on the experiment session management

Picture for the day:GoalBox

Blew my hand off for a while

I’m in the process of turning the Phantom testbed code into a research tool. This means that a lot of items that have been #defines now need to be variables and such.

One of the mechanisms that the shared memory app uses to communicate is a char[255] message. I basically sprintf whatever I want into that, and I can then debug both applications simultaneously.

However, after checking to see that some data were coming across correctly, I took the formatting argument out of the sprintf statement and left the value in. Suddenly I was overflowing the 255 limit and causing all kinds of havoc. Took a few hours to chase that one down. That’s what you get for playing with C/C++. Moving on.

Anyway, I now have an event handling loop, and am able to load target spheres into the application and associate them with a sound file. Tommorrow we’ll try getting the sounds associated with the targets to play. There are some issues, primarily that the gripper can touch multiple targets simultaneously. Still, it looks pretty straightforward. After that I’ll start to roll in the TestManager and TestResults classes into the application.

The other thing to do for the day is to check out the headset code with Brian this evening in the lab and see if the output file bug has either disappeared or can be replicated.

Deadlines and schedules

I was just asked to see how many hours I have left for working this research. It turns out at the rate I’m going, that I can continue until mid-October. This is basically a big shout-out to Novetta, who has granted a continuation of my 20% time that was originally a hiring condition when I went to work for Edge. Thanks. And if you’d like a programming job in the DC area that supports creativity, give them a call.

I just can’t make the audio code break in writing out results. Odd. Maybe a corrupt input file can have unforeseen effects? Regardless, I’m going to stop pursuing this particular bug without more information

Fixing the state problem. Done.

Fixing the saving issue. Also changing the naming of the speakers to reflect Dolby or not. Done.

New version release built and deployed.

And back to Phantom++


I started to add in the user interface that will support experiments. Since it was already done, I pulled in most of the Fluid code from the Vibrotactile headset, which made things pretty easy. I needed to add an enclosing control system class that can move commande between the various pieces.

I’ve also decided that each sound will have an associated object with it. This allows each object to have a simple “acoustic” texture that doesn’t require any fancy data structure.

At this point, I’m estimating that the first version of the test program should be ready by Friday.

Sounds like Deja Vu.

Adding custom speaker number and placement as per Dr. Kuber’s request.

Looks like dot product should do the trick: DotProduct

Done! With only a couple of string compare issues. I also had to make the speaker index jump around the subwoofer channel until I can work out how to set the EQ.

And it looks like there are bugs in the code. It seems that you cannot do zero speed sessions. And the writing out of results with multiple sound files looks pretty confused. I’m not sure if extra CRs are being put in there or if some of the data isn’t being written out. Need to run some more examples.