Infrastructure

So the testing part of the code is done and working. Yes, there are bugs, and some cases where exceptions are thrown that should be handled, but if you color inside of the lines, everything works. Of course, now I need to be able to record the output, so it’s time for some classes to handle the work of saving results for analysis.

  • Creating a TestResult class with the following information
    • session number
    • test number
    • test type (speed or accuracy)
    • time to lift
    • source position
    • cursor position
    • angle difference
    • speaker volume matrix
    • Also, there will be a toString(), toCsvString(), and  toXmlString() method for output;
  • The TestManager will instance and store TestResults in a container (vector?), which will have the additional fields
    • Researcher name
    • Subject name
    • Sound file
    • Total sessions
    • Speed tests per session
    • Accuracy tests per session
Advertisements

So that’s what happens when a programming language gets old…

  • Continuing with the test exec. I’m also going to need a class that records the data associated with each test segment.
  • Ran into a… Well, I don’t want to call it a bug. Let’s say that C++ is showing its age. FLTK uses char*. Most of Windows uses wchar_t. They don’t play well together, so I spent about half of my time working out the best way to convert between them. It’s this:
  • void setSoundFileString(LPCWSTR wps){
    	soundFileString = new wstring(wps);
    	string str(soundFileString->begin(), soundFileString->end());
    	sprintf_s(soundFile, "%s", str.c_str());
    }
  • I mean really!? Good grief.
  • Got a lot of the exec built and running. Clicking on the center button fires the sound, and you can drag to where you think the sound is. I am not all that accurate. It could be a frequency thing though. I’m running a low 10-20 HZ signal. The test should definitely try different frequencies.

FLTK and FLUID. Simple, Good Stuff

  • Starting to put together the actual test framework. Found a good open source synthesizer (ZynAddSubFX) that I used to create a pure tone that I then cut down to one second with Audacity. It’s important to note that this app only works with MONO sounds.
  • Building up the class that will handle running multiple sessions.
  • Just a quick shout out to FLTK. I have been adding and adjusting the GUI all day long as I figure out how to run the tests. To add fields, adjust positions and just generally futz around, all I have to do is use the FLUID gui IDE, export the layout as C++ code, add in stdafx.h and compile. It all just works. A great piece of code. FLTK_rocks

Closing in on something useful

  • Put all the projects into SVN, checked them out and did a clean build. Everything still works.
  • Starting on capturing mouse events. Done. Capturing Left, Middle, Right, Wheel and Drag. I think I want to have it so that the user presses (holds down?) a “button” in the middle of the GL window, signifying that he’s ready for the next sound queue. Once the sound plays, he drags toward the source. This is indicated by a line indicating the vector (and a cursor?). Releasing the mouse is the event that marks and records the choice, vector, elapsed time and position (vector?) of the emitter.
  • Making a button class for OGL. Done
  • Making a line segment class so we can point to where the sound is. Done.
  • And just to show that I’ve been paying attention in class, the user doesn’t have to worry about hitting a particular length when dragging towards the sound. Since there is essentially no source (since the test starts after the subject clicks) and no target, we don’t have to worry about any Fitts’ Law biases 🙂
  • Progress for today:
  • vth

    Start Button (red), Sound Vector and Emitter

Audio is in and synchronized to the video

Well that was a good day.

  • Spent a good deal of time trying to figure out the best way for the GUI and the Exec to communicate. Originally, I wanted to be able to pass a pointer to the GUI from the exec so that user actions in the GUI could be executed in a more reasonable place. Due to header conflicts, I couldn’t manage to get that to work, so I put together a UI_cmd class that is set in the UI and read in the Exec. That seems to be working pretty well, though I may want to put a queue in there and turn it more into a message bus/event pump. That level of sophistication isn’t needed yet though.
  • Integrated the sound library that I wrote. I still have to reference the D3D audio library in the main application which I think is a bit odd, but I think it may be because I’m incorrectly exporting the symbol table from the static library. Again, that’s a refinement for later.
  • At this point, the 3D position of my OGL shape and the 3D postion of my continuous sound (2D actually, Y = 0) are running in an infinite circle. It’s pretty cool to hear the audio track to the image. I’m uploading a video of the running system, and although it won’t be in surround, you can hear the flanging effects from the sound moving around the helmet.

Not bad for 90 minutes worth of work…

I’m busy doing demos and presentations in my day job, so this has been suffering. Nonetheless, here’s the progress for today:

  • Added a fine-grained timer callback to the main app
  • Added an OpenGL window, set to Ortho2, and with pixel-accurate dimensions
  • Connected the timer to the OpenGL, and set the position of what will be the emitter. We won’t see this during the actual test, but it will be good for debugging.
  • I need to track mouse clicks and motion in the GL window. That will come tomorrow, and then I’ll work on integrating the audio library. That’s the basics for running the experiments. After that, I’ll work on reading and writing the input and result files.
  • Pix for today: AppProgress6.18.13